Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Christophe M. L. Vande Velde,* Herman J. Geise and Frank Blockhuys

Structural Chemistry Group, University of Antwerp, Universiteitsplein 1, B-2610 Antwerpen, Belgium

Correspondence e-mail:
frank.blockhuys@ua.ac.be

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.039$
$w R$ factor $=0.113$
Data-to-parameter ratio $=14.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

1,3-Dimethoxy-5-(triphenylmethylthio)benzene

The title compound, $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}$, crystallizes in space group $P \overline{1}$ with one molecule in the asymmetric unit. The geometry and intermolecular contacts are described: the rings in thetriphenylmethyl moiety show a near-threefold symmetry, and the compound displays $\mathrm{OCH}_{3}-\pi$ interactions in the methoxysubstituted ring and herringbone interactions between the unsubstituted rings.

Comment

The title compound, (I) (Fig. 1), was synthesized as a precursor material for a sulfur-substituted PPV oligomer, which is a possible candidate for a break-junction experiment (Weber et al., 2001). In the course of purification, it crystallized exceedingly easily, which prompted us to perform an X-ray structure determination to verify the identity of the product. The intramolecular distances and angles contain no surprises. The phenyl rings in the triphenylmethyl moiety (TPM) show nearly threefold symmetry, the angles between the planes of the rings being $77.62(9)^{\circ}(B-C), 72.60(9)^{\circ}(B-$ $D)$ and $70.77(10)^{\circ}(C-D)$. The packing consists of columns of methoxy-substituted rings, surrounded by areas dominated by TPM groups. There are a number of intermolecular contacts shorter than the sum of the van der Waals radii. The methoxysubstituted rings are loosely connected by weak $\mathrm{OCH}_{3}-\mathrm{Cg}(A)$ interactions (see Table 1). Another methoxy group, which is directed outside the stack, contacts C24 in ring D of the next molecule in the same stack [C24‥C27iv 3.384 (4) A. symmetry code: (iv) $-x, 1-y,-z]$. Two of the phenyl rings in the TPM moiety show herringbone interactions with each other (see Table 1). A close contact also exists between H 24 and $\mathrm{O} 5\left[\mathrm{O} 5 \cdots \mathrm{H} 24^{\mathrm{v}} 2.66\right.$ (3) \AA, symmetry code: (v) $\left.x, 1+y, z\right]$.

(I)

Experimental

3,5-Dimethoxythiophenol (II) was prepared as described by Wolfers et al. (1979). $\delta^{1} \mathrm{H}$ (in p.p.m., relative to TMS, in CDCl_{3}): $6.42(d, J=$ $2.13 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2$ and H 6$) ; 6.25(t, J=2.13 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4) ; 3.75(s, 6 \mathrm{H}$, OCH_{3}); $3.46(s, 1 \mathrm{H}, \mathrm{SH}) \delta^{13} \mathrm{C}$ (in p.p.m., relative to TMS, in CDCl_{3}): $161.06(\mathrm{C} 3), 132.59(\mathrm{C} 1), 107.45(\mathrm{C} 2), 98.38(\mathrm{C} 4), 55.36\left(\mathrm{OCH}_{3}\right) .1,3-$ Dimethoxy-5-(triphenylmethylthio)benzene (I) was synthesized as follows: 3.5 g (0.0206 mol) of crude (II) was dissolved in 4 ml of

Received 28 August 2003
Accepted 8 September 2003
Online 24 September 2003
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and carefully added to $36 \mathrm{~g}(0.0206 \mathrm{~mol})$ of triphenylmethanol dissolved in 36 ml of trifluoroacetic acid (TFA). The orange-black solution was stirred for 1 h at room temperature, then the TFA was distilled off under vacuum. The brown dry residue was carefully neutralized with conc. aqueous sodium bicarbonate and stirred for 1 h , giving rise to a bright orange precipitate. This was extracted three times with chloroform and dried over MgSO_{4}. The solvent was evaporated, and the residue recrystallized from methanol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; yield $5.3 \mathrm{~g}(60 \%)$. Crystals suitable for X-ray diffraction were grown by recrystallization from hot methanol. $\delta^{1} \mathrm{H}$ (in p.p.m., relative to TMS, in CDCl_{3}): $7.40(m, 6 \mathrm{H}$, aromatic m-H); $7.22(m, 9 H$, aromatic $o-$ and $p-\mathrm{H}) ; 6.22(t, J=2.29 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4) ; 6.15$ $(d, J=2.29 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2-\mathrm{H} 6) 3.48\left(s, 6 \mathrm{H}, \mathrm{OCH}_{3}\right)$.

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=412.52$
Triclinic, $P \overline{1}$
$a=8.8390(12) \AA$
$b=10.157(4) \AA$
$c=12.672(2) \AA$
$\alpha=79.37(2)^{\circ}$
$\beta=72.31(2)^{\circ}$
$\gamma=87.93(2)^{\circ}$
$V=1065.0(5) \AA^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.286 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=7.7-19.8^{\circ} \\
& \mu=0.17 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.40 \times 0.23 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius Mach3 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none 4949 measured reflections 4635 independent reflections 3417 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.113$
$S=1.03$
4635 reflections
329 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 13-\mathrm{H} 13 \cdots \operatorname{Cg}\left(C^{\mathrm{i}}\right)$	$0.96(2)$	$3.913(3)$	$3.09(2)$	$144.5(14)$
$\mathrm{C} 17-\mathrm{H} 17 \cdots \operatorname{Cg}\left(B^{\mathrm{i}}\right)$	$0.94(2)$	$3.585(3)$	$2.78(3)$	$143.1(17)$
$\mathrm{C} 26-\mathrm{H} 26 A \cdots \operatorname{Cg}\left(A^{\mathrm{iii}}\right)$	$0.99(2)$	$3.720(3)$	$2.797(15)$	157

Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $x-1, y, z$; (iii) $1-x, 1-y,-z . C g$ is the centre of gravity of ring A.

Figure 1
Molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

The H atoms on the methoxy groups were constrained, allowing the methyl group to rotate and the distances to refine, but keeping the angles between the H atoms close to 109.5°. All other H atoms were allowed to refine freely.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

CVV thanks the Fund for Scientific Research (FWO Vlaanderen) for a grant as a research assistant. The authors also thank Professor R. Dommisse and J. Aerts for recording the NMR spectra.

References

Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Harms, K. (1996). XCAD4. University of Marburg, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). PLATON. Utrecht University, Utrecht, The Netherlands.
Weber, H. B., Reichert, J., Weigend, F., Ochs, R., Beckmann, D., Mayor, M., Ahlrichs, R. \& Löhneysen, H. V. (2001), Chem. Phys. 281, 113-125.
Wolfers, H., Kraatz, U. \& Korte, F. (1979). Synthesis, 7, 43-44.

